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Terrain and precipitation patterns in western US.
We have mountains, too, and they modulate our weather.
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Period: 1961-1990  Units: inches



How can we provide spatially detailed
weather forecasts in such regions?

(1) Dynamical downscaling;
high-resolution NWP

UW WRF-GFS 4km Domain Init: 12 UTC Tue 26 Aug 08
Fest: 24 h Valid: 12 UTC Wed 27 Aug 08 (05 PDT Wed 27 Aug 08)
Total Precip in past 3 hrs (.0lin)
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Model Info: V2.2.1 KF YSU PBL Thompson Noah LSM 4.0 km, 37 levels, 24 sec
LY. CAM S: CAM DIFF: simple KM: 2D Smagor

http://www.atmos.washington.edu/~cliff/cliff.php

(2) Statistical downscaling;
relate high-resolution
measurements to
lower-res. model forecast

Probability (%) of Precipitation > 10.0mm
2 day forecast, from 00Z 12 Jun 2011 Valid 13 Jun

http://www.esrl.noaa.gov/psd/forecasts/reforecast/narr/
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Definition

e Reforecasts are retrospective numerical
forecasts, ideally conducted using the same
model, the same data assimilation system
that is used operationally. Also called
“hindcasts”

e We prefer “reforecast” to emphasize
connection with reanalyses and having
guality initial conditions.



Outline

e Why generate reforecasts? Advantages
and disadvantages of relying on statistical
downscaling to produce forecasts.

e \What reforecast data sets are/will be
available for NWP?

— details on our upcoming reforecasts.



Why generate and use
reforecasts?

Why not?



What can post-processing with
reforecasts do that other NWP
techniqgues cannot?

e Provide extra “resolution,” but via statistical
downscaling.

— Also: compensate for systematic model biases, thereby
increase reliability, increase forecast skill.

— High-resolution models may have lots of detail but are not
free from bias!

e Provide sufficient samples to quantify forecast errors
for particular locations, hydrologic basins.

e Provide context on how unusual today’s forecast event
is, relative to other forecast events.



Disadvantages of post-processing
with reforecasts

e Right answer perhaps, but for wrong reason? We prefer to directly
improve the model in physically realistic ways.

— Also, some errors are too complex to adjust via post-processing; for these,
there is no substitute for improving the model.

e Additional computational and infrastructural burden to compute
reforecasts and reanalyses, compile observation time series.

— ECMWTF’s (relatively sparse) weekly 5-member reforecast * 20 years = 100
extra members / week to compute.

— Generally greater benefit the more years, more days, more members in
reforecast, but proportionally more expensive.

— Without high-quality, long observation time series, many of the benefits of
reforecasts + statistical post-processing are lost.

— Need to keep computing reforecasts with current model version, else
improvements are temporary.

e If real climate or model-error statistics change significantly during
reforecast period, decreased accuracy of post-processed estimates



Post-processing and
reforecast
advantages

(all results using T62 GFS reforecast
unless otherwise noted)
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Statistical downscaling example

(b) Ensemble—mean Precipitation (c) Logistic Regression
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Coarse resolution model forecasts the large-scale precipitation anomaly
realistically, but without small-scale detail. Statistical downscaling fills in
this detail, relating past forecasts and observations to correct the real-time

forecast. Methods of statistical downscaling discussed later. 11



Analog technique for statistical downscaling

Today’ s ens. mean
forecast + a posteriori
analyzed precip.

|

26 Nov 2005
24—48h Forecast

Analyzed
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24—h Accumulated Precipitation (mm)

On the left are old forecasts
similar to today’ s ensemble-
mean forecast. For making
probabilistic forecasts,

form an ensemble from

the accompanying

analyzed weather on the
right-hand side.
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Analog technique for statistical downscaling

24 Oct 1979 18 Nov 1979 24 Oct 1996 25 Nov
Analyzed

Analyzed

26 Nov 2005
24—48h Forecast Analyzed
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A Analyzed
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Downscaled analog probability forecasts

26 Nov 2005
24—-48h Forecast Analyzed
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Brier Skill Score

Brier Skill Score

Ensemble Relative Frequency
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Verified over 25 years of forecasts;
skill scores use conventional
method of calculation which may
overestimate skill

(Hamill and Juras, QJRMS, Oct 2006).
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Observed Frequency (%)
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Post-processing of heavy precipitation and
other rare events: importance of sample size

Effective calibration is aided by having old forecast cases that were
similar to today’s forecast. Then the difference between the observed
and forecast on those days can be used to calibrate today’s forecast.

1—Day Ensemble—Mean Forecast and Observed Precipitation
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In an example like this, the last 45 days of forecasts weren’t very useful.



Brier Skill Score

Effect of training sample size:

analog technique sensitivity to training sample size
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colors of dots indicate which size analog ensemble
provided the largest amount of skill. 18



More exotic post-processing
application: tornado probabilities

Observed F2+ Tornado Counts in 12—hour Window

Centered on 0000 UTC 27 Apr 1991
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We used CAPE, vertical wind shear
and analog approach to find dates

of similar old cases, then estimated
tornado probabilities from occurrence
on those dates.



Hurricane track corrections?

72-h Forecast Verifying 1200 UTC9 September
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Another use of reforecasts:
assessing usefulness of model output for hydrologic forecasting

Verzasca ; RGES Verzasca ; RGES
1971 - 2001 : 31 days gliding window daily climatology 1989 - 2008 : 31 days gliding window

Observation

total runoff (mm/d)
total runoff (mm/d)

T T T T ©

| | I |

Mar May Jul Sep Nov Mar May Jul Sep Nov

TopLeft: Discharge Climatology Quantiles (30 day gliding mean) for the Verzasca basins
obtained forcing the hydrological model PREVAH with COSMO-LEPS reforecasts (1971-2000).
TopRight: Observed daily discharge climatology (1989-2008)

21
from Felix Fundel et al. poster, ftp./ftp.wsl.ch/pub/zappa/imprints/del3_1/cleps _bcn.pdf



Hydrologic
Ensemble
Prediction

Experiment

Note that hydrologists envision

a step to make sure that ensemble
inputs to their hydrologic system
are as reliable and sharp as possible.
Reforecasts may be needed for this
step.

from Schaake et al. 2007 BAMS article

Land-surface state
observations (snow,
streamflow,...)

Weather-Climate
Ensembles

Meteorological
Pre-processor

Hydrological
Data Assimilator

Calibrated
Weather-Climate
Ensembles

Calibrated
Land-surface state
Ensembles

Hydrological
Forecast
Model(s)

Streamflow
Ensembles

Hydrological
Product
Generator

Y

Calibrated
Streamflow
Ensembles

Verification
System



Reforecast use: tropical cyclogenesis

ECMWF Monthly Forecast DAY 12-18
Tropical Storm Frequency 06/09-12/09/2010
Forecast start reference is 26/08/2010 Climate = 1992-2009
Ensemble size = 51,climate size = 90
Forecast mean e Climate median
20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W

20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W
Not Significant Significant at 5%

Many forecast models over-forecast tropical cyclogenesis. This ECMWF product
uses TCgenesis from reforecasts to provide some calibration for possible biases.

Ref: D. Richardson, personal communication, ECMWF.



Another reforecast use: facilitates quantitatively
assessing how unusual an event is (EFI)

%& EPS I-EFI 05@00+48/72h vt 07@00-08@00

The forthcoming -
I nte ra Ctlve E FI (I - E FI ) Weather anomalies predicted by EPS: Thursday 05 February 2009 at 00 UTC

1000 hPa Z ensemble mean ( Saturday 07 February 2009 at 12 UTC)
can be u Sed to and EFIl values for 24h TP, 10m wind gustand 2m temperature
IdentlfleS areas Where valid for 24hours from Saturday 07 February 2009 at 00 UTC to Sunday 08 February 2 t00 UTC

the ensemble forecast
distribution is
significantly different
from the climatological
distribution, and
visualize the grid point
distributions.

This plot shows the I-
EFI +48/72h forecasts
issued on 5@00UTC
and valid between
7@00UTC and
8@O0UTC.

Extreme hot and windy

24

HEPEX Toulouse (15-19 June 2009) - Florian Pappenberger: ECMWF: Supporting Hydrological Forecasting 16



¥ Calibration strategy

CDF

return period“

OoBS MOD FCST 4
! X

»return period*

Quantiles w.r.t. observations are not reliable
Quantiles w.r.t model climatology are reliable

,calibrated
return periods®

,Faw
return periods*

ECMWEF Forecast Product Users Meeting | 12.06.2008
Felix Fundel r\

NCCR CLIMATE

Swiss Climate Research



Extreme Forecast Index
(needs accurate forecast climatology,
such as provided by reforecasts)

_2 ' p—F;(p)
EFI_ﬂjon(l—p)

p is the percentile of the cumulative distribution estimated
from the ensembile; F;(p) is how the p-percentile of the
climate record ranks in the EPS (0 the minimum, 1 the
maximum). This “Anderson-Darling” version introduces a
weighted statistic that

gives more power in the tails of the distribution. 2/t is

normalization factor to keep -1 < EFI < 1. 26
From: LalLaurette, QJRMS, 2003, and http://www.ecmwf.int/products/forecasts/efi_guide.pdf
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Reforecast / calibration
disadvantages

28



Advantage of dynamical downscaling:
forecasts of some processes very bad without
high resolution, explicit convection

An example from NSSL-SPC Hazardous Weather Test Bed, forecast initialized 20 May 2010
http://tinyurl.com/2ftbvgs

30-km SREF P > 0.5” 4-km SSEFP>0.5“ Verification

i

H
| R
100521 /DOO0Y027 SREF 6—hr QPF Prob > i 00521 /70000vV02
10 30 ] 3 S0

{
{ ¥
0.5 20100521 /00 UTC 6—HR QPE > O

70 9 0.50 1.00 1.50 2.00 3.00 S.0 7.00 9.00
M T e T T e P —

With warm-season QPF, the comparatively coarse resolution and parameterized convection
in operational 30-km ensemble system produces a forecast that is clearly inferior to the 4-km,

resolved convection ensemble. Statistical downscaling will only work if the model generally

has some predictable signal at the larger scales. 29
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ECMWEF Forecast Product Users Meeting | 12.06.2008

ff'\ NCCR CLIMATE

Swiss Climate Research




Disadvantage: non-stationary
forecast errors in reforecasts?

e If real climate or model-error statistics change significantly during
reforecast period, decreased accuracy of post-processed estimates.

Short-term forecast fit to radiosondes

(@) 50

70
100
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200
250
300
400
500
700

850 T T I
0 1 2 3 4 5 6 7 8 9 10 M1

J urm32 + Vrm52 (m/S)

=== FGGE Main June 1979 === FGGE Final June 1979 === ERA-15 full year 1979 === ERA-40 June 1979 ERA-Interim June 1979 === Operations June 2007

Pressure (hPa)

31
From Dee et al.,, QJRMS, 2011 article on ERA-Interim



Changing climate: today’s forecasts
warmer than those in training data set?

1.0

0.5

0.0 ;Am k MM !
vv“v‘ v""‘t vk WA ‘

-0.5

Temperature Anomaly (°C)

1.0 i i . e et W] i i e o st W i i
1 200 1000 1500 2000

Year AD

If forecast today is warmer than any in the reforecast training data set, we’ll be
“extrapolating the regression” when we apply statistical corrections. 32



Computational burden
of reforecasting

e Real-time ensemble: assume 50 members,
2x daily = 100/day = 700/week

e Minimal reforecast: 5 members, 20 years,
1x weekly = 100/week : 1/7 extra

e Moderate reforecast: 10 members, 30
years, 1x daily = 2100/week : 3x extra.

e Full reforecast: 50 members, 30 years, 2x
daily = 21000/week : 30x extra!

33



Two general approaches to
generating a reforecast data set

e Compute once, freeze the model (our
approach). Repeat only once every couple
years.

— Offline calculation of reforecasts, we can afford
to generate a larger number of them.

e Real-time computation. For whatever
model version you’re running, make sure
you have reforecasts to calibrate (ECMWF

approach). 3



What reforecast data sets are or
will be available for NWP?

35



Available weather reforecast data sets

Producer

ECMWEF
EPS

NCEP GEFS
(1998
version)

NCEP
GEFS
(late 2011
version)

COSMO-
LEPS

#
years

18

32

30+

30
(1971-
2000)

3)

15

11

#

weekly

daily

daily

daily

real-time
members frequency or offline?

real-time

offline

offline

offline

resolution

T639 then

T319 after 10

days
T62

T254 then
T190 after 8
days

~10 km

forecast
duration

30 days

15 days

16 days

90 h

36



2011 GEFS reforecast:
design principles

* Reforecasts will be computed with a (smaller-
ensemble) version of the GEFS that will be

operational in 2011.
 We hope that GEFS will remain in this

configuration, or will be changed only slightly,
for several years thereafter.

* Once GEFS changes, either NCEP/EMC or ESRL
will continue to run the reforecast version
until a next-generation reforecast is in place.



Anticipated configuration

Every 00Z, every day, 1980-current
11-member forecast (control + 10 perturbed)

Lead time to 16 days.

— T254142 to day 8

— T190L42 from days 7.5 to day 16.

“CFSR” reanalysis initial conditions (GSI, 3D-Var).

Mimics the expected operational configuration in late
2011.

Data saved 3-hourly, to 3-day lead, thereafter every 6
hours.



Storage of reforecast data set

* Storing of “important” agreed-upon subset of data ~=

170 TB. Which fields described in a subsequent slide.

— ESRL/ PSD has purchasing ~ 170 TB of storage and server capability for
this data set. Cost ~ S200K for hardware.

— Will design software to serve this out to you in several manners (http,
ftp, OPeNDAP, etc.).

— Back this up to tape.

e Storing full 00Z reforecasts and initial conditions ~=
800 TB.

— Useful for LBC’s to run regional reforecasts, or if more fields added to
“important” subset.
— US Department of Energy will archive this for us.



Proposed fields for “fast” archive

Mean and every member
“Fast” archive will be on disk, readily accessible

Mandatory level data:

— Geopotential height, temperature, u, v, at 1000, 925, 850,
700, 500, 300, 250, 200, hPa.

— Specific humidity at 1000, 925, 850, 700, 500, 300, 250,
200

PV (K m?2 kg*s?!)on6=320K surface.

Wind components, potential temperature on 2 PVU
surface.



Fixed fields to save once

— field capacity
— wilting point
— land-sea mask
— terrain height



Expected single-level fields for “fast” archive

. Surface pressure (Pa)

. Sea-level pressure (Pa)

. Surface (2-m) temperature (K)

. Skin temperature (K)

. Maximum temperature since last storage time (K)

. Minimum temperature since last storage time (K)

. Soil temperature (0-10 cm; K)

. Volumetric soil moisture content (proportion, 0-10 cm) —
. Total accumulated precipitation since beginning of integration (kg/m?)
. Precipitable water (kg/m?, vapor only, no condensate)

. Specific humidity at 2-m AGL (kg/kg; instantaneous) —

. Water equivalent of accumulated snow depth (kg/m?) —
< CAPE (J/kg)

< CIN (J/kg)

. Total cloud cover (%)

. 10-m u- and v-wind component (m/s)

. 80-m u- and v-wind component (m/s)

. Sunshine duration (min)

. Snow depth water equivalent (kg/m?)

. Runoff

. Solid precipitation

. Liquid precipitation

. Vertical velocity (850 hPa)

. Geopotential height of surface

. Wind power (=windspeed? at 80 m*density)



Proposed fields for “fast” archive

* Fluxes (W/m?; average since last archive time)

— sensible heat net flux at surface

— latent heat net flux at surface

— downward long-wave radiation flux at surface
— upward long-wave radiation flux at surface

— upward short-wave radiation at surface

— downward short-wave radiation flux at surface
— upward long-wave radiation at nominal top

— ground heat flux.



Where we are now

170 TB storage in place.
Control run done.
Perturbed initial conditions done.

Are just beginning to compute the perturbed
member reforecasts.



Issues in reforecasting

Relative benefits of statistical vs. dynamical downscaling for
particular phenomena.

What is the appropriate compromise (large reforecast,
large computational burden) vs. (small reforecast, small
computational burden).

What are the best statistical post-processing techniques for
a particular phenomenon

— may differ for T, precipitation, hurricane track, severe weather
likelihood, etc.

Examining errors in low-frequency processes in the model
(MJO, NAO, etc.).

Relative benefits of multi-model vs. single-model +
reforecast.

sfc’



Reforecast vs. multi-model, T,

2m Temperature, 250 European Stations, DJF 2008/09
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BSS

BSS

0.7
0.6

0.5
0.4
0.3
0.2
0.1
0.0

(b) Brler Skill Scores, 10 mm (00Z only)

0.7
0.6

0.5
0.4
0.3
0.2
0.1
0.0

Reforecast vs. multi-model
precipitation over US, Jul-Oct 2010

(a) Brler Skill Scores, 1 mm (00Z only)
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Now, the following forecasts are plotted:
20-member ECMWEF forecasts (black);
ECMWEF, calibrated via logistic regression
using 9 years of ECMWF 4-member
weekly reforecasts (green); multi-model
(blue) and multi-model, calibrated using
the last 30 days of forecasts/analyses.

Reforecasts appear to provide most
improvement at heavy precipitation
thresholds.



Observed Frequency (%)

Sample reliability diagrams
ECMWEF, reforecast-calibrated, multi-model

Reliability, Day +3 10.0mm
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Conclusions

 We believe reforecast data sets can be used to
improve forecast guidance for a wide range of
phenomena.

* There are still many issues where your
research can help us understand the role of
reforecasting in the larger weather prediction
effort.

e We look forward to further discussions and
possible collaborations.



Statistical post-processing,
holistic view

e Would like probability distribution ¢ of true state
T (or samples thereof) given all available

information, inc

o(T

uding today’s ensemble forecast

X, 5o X, ,z)

* z might be past observations and/or forecasts,
output from other modeling systems, your

Intuition, etc.

e ¢ might be a field rather than a scalar
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A quick survey of common
post-processing techniques

Simpler methods

Gross bias correction
Kalman-inspired filters
CDF-based bias corrections
Linear regression

Some more complex methods

Logistic regression

Analog approach

Bayesian model averaging (MDL’s EKDMOQOS very similar)
Bayesian processor of forecasts

Non-homogeneous Gaussian regression

Rank histogram-based calibration
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Gross bias correction

e Given sample of past forecasts x,, ..., x, and
observations y,, ..., y,, gross bias correction is

simply Y —X

(a) ECMWF (b) GFS
1.0f o o o ECMWF Calibrated 1.0f o o o GFS Calibrated
0.8F o -0« ECMWF Bias—Corr ] 0.8 e--o--¢ OFS Bias—Corr ]
0.6 | 0.6 |
8 0.4 8 0.4
& L e r e
o 0.2 o 0.2 ° e
0.0F 0.0F
-0.2F ] -0.2F
—04: T A T AN A NN WA (N NN AN T A TN NN RN SN N S - —04: T A T NN N NN MO (N NN NN T N N N |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Forecast Lead (Days) Forecast Lead (Days)

In surface-temperature calibration experiments with NCEP’s GFS and ECMWF,
simple gross bias correction achieved a large percentage of the improvement

that was achieved through more sophisticated, bias+spread correction. e

Ref: Hagedorn et al., MWR, 2008, in press.



Gross bias correction

e Effectively, the implied statistical model is
the following:

Yi::B+Xi+8i

— assumes normality of errors; uncorrelated

errors, error not state dependent (next slide).
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State-dependent errors

January Boulder Reforecast—U,,, vs. NARR avg.

10 | L T 7

For this 10-m wind,

the bias is conditional,
depends on the forecast
amount. Linear regression
(discussed later) a

much better choice.

NARR Avg. U,

_10 I 1 1 1 l 1 L 1 1 | 1 L L ! |

-10 -5 0 5 10
Reforecast U,,,,
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“Kalman-inspired” filter

Today’s Yesterday’s Yesterday’s
estimate l l
b =b! K (e - b
4 r—1 4 4 r—1
X
Kalman gain: weighting applied
to residual. Larger K,, more weight
to recent data, and vice versa.
Pro:
- memory in system, amount tunable through K,
- adaptive
Con:

-assuming there is state-dependent bias, takes time to adapt

after regime change and change of state.

Ref: Cheng and Steenburg, conferences.dri.edu/WxPrediction/Weather12/Cheng_Steenburgh.ppt



An alternative “analog” formulation

| | | |
| | | |
| | | |
i i i i Standard
| | | |
i i i ; Kalman-type
| | i i filter
|
| | |
| day, | dayg | day | day, | day, | day, | day, |
t=0
| | | | |
| | | | |
| | | | |
PRED ! | | | | Analog
| | | | |
i | | i | Kalman-
S\ | | | | v
| | | | | “\\/ type
| I I I I | / \" .- ﬁlter
| | | I | I /
day ¢ : day 5 : day_, : day ., : day 4 : day : day_4 I S
farthest closest
analog analog
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CDF-based bias corrections

Zhu CDF correc’rlon <CONUS> 1-Day ch’r Julian Day

e -
1.0 F :
WA :

L 08 = 8 3
() : (0] ]
O - S -
- L =

0.7 3 I E

- al 1 __ Forecast :

: 3l |5 ]

0.6 1B Observed B

- w| | = .

C ()] O .

- O| |x i

0.5t . ... Al I Lo Lovove =

0 10 20 30 40

Precipitation Amt (mm)

Ref: Zhu and Toth, 2005 AMS Annual Conf., and many others

Use difference

in CDFs to correct
each ensemble
member’s forecast.
In example shown,
raw 7-mm forecast
corrected to ~5.6 mm
forecast.

NOTE: bias only, not
spread correction or
downscaling.
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CDF corrections: example of problem

1-day forecasts in Northern Mississippi (US), mid-August.
Consider a forecast precipitation of 25 mm.

Sb) Observed vs. Forecast
(a) CDFs Scatterplot, Remapping Function (c) Histograms, 25 mm
60 ;l T ; T AR AL T )E 0.20 T T T T T
— E : 7 r
E |- s i
] Es50f . . o, i Raw ]
v F s E 0.15r CDF bias ]
] E ok . F I ]
] < ] Y E [ : corrected
uw ] 3 A z [O]F
8 [ _ 4 30 CDF 3 § 0.10
N i e o
0.471 — Forecast ] < O|F
~ 20
K]
I 1 0.05
0.2 __ Observed s E 10 E
F 1 7]
L el
L o é
0.0 L L L 1 1 Levediiinl I A 0.00
0 10 20 30 40 S0 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Precipitation Amount (mm) Forecast Precipitation (mm) Forecast Precipitation (mm)

T

CDF-based corrections at high amounts suggest further increasing
precipitation amount forecast. O|F indicates
decrease.

At root of problem is assumption that Corr (F,0) = 1.0 58



Linear regression
Y, = :Bo +181Xi,1 +"'+ﬁNXi,2 T &,

Linear Regression and MOS

N
(6)]
|

N
o

W
o

Observed Temperature (C)
W
O

25

50_||||||||||| T [ r T 1 ] r T

20 25 30 35 40
Forecast Temperature (C)

Ref: any applied statistics textbook

45

50

Corrects for state-dependent
bias; when no predictive

skill of forecast, regresses

to observed sample climatology.

Diagnostics include statistics

on error, so can infer (largely
non-state dependent) pdf.
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When is linear regression
approach useful?

e Some assumptions:
— Normality of errors.

— Linear relation between predictors and
predictand.

— Homoscedasticity, error variance doesn’t
depend on state x.

— Errors are uncorrelated between samples.

Ref: any applied stats text, e.g., Neter, Wasserman, and Kutner, Applied Linear Statistical Models.
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When is linear regression
approach useful?

e Some assumptions:
— Normality of errors.

— Linear relation between predictors and
predictand.

— Homoscedasticity, error variance doesn’t
depend on state x. < Well, there goes using

this for precipitation!

— Errors are uncorrelated between samples.

61
Ref: any applied stats text, e.g., Neter, Wasserman, and Kutner, Applied Linear Statistical Models.



When is linear regression
approach useful?

e Some assumptions:
— Normality of errors.

— Linear relation between predictors and
predictand.

— Homoscedasticity, error variance doesn’t
depend on state x.

— Errors are uncorrelated between samples.

T Problematic for weather, if samples every day.
“Serial correlation,” smaller “effective sample size.”
But can deal with this problem.

62
Ref: any applied stats text, e.g., Neter, Wasserman, and Kutner, Applied Linear Statistical Models.



Linear regression — big assumption!
Y, = :Bo +181Xi,1 +"'+ﬁNXi,2 T &,

unknown, T T
with error known, assumed no error

In our practice, the Y’s typically have some small error (obs)
and the X’s have larger error (forecast model state).

Practically, the method works well enough to gloss over what
error g, represents, but there is a whole branch of statistics
(regression with “errors in variables”) that deals with this more
formally. This incorrect assumption applies to most of the rest
of the methods discussed, too.

Ref: Casella and Berger, Statistical Inference, 1990. Also Vannitsem & Nicolis, Feb 2008 MWR (though | 63

think their analysis is unfairly critical of MOS)



Model Output Statistics (“MOS”)

most elements based on multiple linear regression

KBID GFS MOS
DT /FEB 17
HR 00 03 06
N/X
TMP 42 39 36
DPT 34 29 26
CLD OV FW CL
WDR 26 30 32
wWsSP 12 12 12
P06 17
P12
Q06 0
Q12
TO6 0/ 2
T12
POz 0 0 O
POS 13 47 70
TYP R S S
SNW
CIG 7 8 8
VIS 7 7 1
OBV N N N

US: Statistical corrections to operational US NWS models, some fixed (NGM),
some not (Eta, GFS). Refs: http://www.nws.noaa.gov/mdl/synop/index.htm,
Carter et al., WAF, 4, p 401, Glahn and Lowry, JAM, 11, p 1580. Canadian models
discussed in Wilson and Vallee, WAF, 17, p. 206, and WAF, 18, p 288. Britain: Met

GUIDANCE 2/16/2005

/FEB 18
09 12 15 18 21 00 03 06

32 40
33 32 36 38 37 35 33 30
22 19 18 17 17 17 17 17
CL SC BK BK BK BK BK BK
32 32 31 29 28 30 32 31
11 08 08 09 08 09 09 10
0 0 0 4

17 0
0 0 0 0

0 0
0/ 0 1/ 0 1/ 2 0/ 1
1/ 0 1/ 2
0o 0 0 0 0 0 0 O
84 91100 96100100100100
S s s s s s s s
8 8 8 8 8 8 7 7
7 7 7 7 7 71 1 17
N N N N NN N N

1800 UTC
/FEB 19

09 12 15 18 21 00 03 06 12 18

25 35 19
28 27 30 32 31 28 25 23 19 27
15 14 13 11 8 7 6 5 2 4
BK SC BK BK BK BK FW CL CL CL
31 31 31 30 29 31 32 33 33 27
10 10 12 13 13 15 16 15 09 08
0 10 6 8 0 O

10 17 8
0 0 0 0 0 O

0 0 0
0/1 1/ 0 0/ 1 0/ 0 0/ 0
1/ 1 0/ 1 0/ 0
o 0 0 0 0 0 0 0 0 O
92100 98100100100 94 92100100
S s s s s s s s s s

0 0
7 8 7 7 7 8 8 8 8 8
7 7 7 7 7 7 7 17 1 1
N N N N N NN N N N

Office uses “updateable MOS” much like perfect prog.
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Logistic regression

e Useful for making probabilistic forecasts for some
binary event, e.g, precip above threshold.

e For each grid point (or station) let x = continuous
predictor data (ens. mean forecast value), y = binary
predictand data (1.0 if predicted event happened, 0.0

if not).
e Problem: Compute P(y=1.0 | X ) as a continuous
function of x. 1
P=1-

* Logistic Regression: 1+ exp (Bo + Bix)

65
Ref: any applied statistics text.



Logistic regression using a long data set
of observed and forecast anomalies

6—10 Day SfcT Fcst v. Ver,
~ Oregon, January 16 ' 00

o~~~ T T e Seeking to predict

! sl probability of warmer than
A normal conditions (upper
tercile of observed). Using
reforecasts

(a later talk), we have 23
years of data. Let’s use old
data in a 31-day window
around the

date of interest to make
statistical corrections.

Lo S R L P N £

LT

B e I IR 0.50

Observed Anomaly (°C)
o
I
|

0.25

(en1o4e] Joddn < Jop)d

I
(O)
T I T
H
-
|

Dashed lines: tercile boundaries
| ~ o | Red points: samples above upper tercile
—10 beprn 'l" R T 0.00 Blue points: samples below upper tercile
Solid bars: probabilities by bin count
-10 -5 0 5 10 g Y

o Dotted line: logistic regression curve
Forecast Anomaly (°C)
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Logistic regression drawbacks

Doesn’t generate full pdf (though see Wilks,

2009, Met Apps, p. 361).

With ensembles, what do you use as
predictors? Ens. mean? Spread? Every
member?

Iterative technique, can be slower.

Better have training set with distribution of

1’s and O’s, otherwise software will croak.
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Analog technique using reforecasts

24 Oct 1979 18 Nov 1979 24 Oct 1996 25 Nov 1997
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee A

26 Nov 2005
24—48h Forecast Analyzed

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

1 2.5 5 10 25 50
24—h Accumulated Precipitation (mm)

On the left are old forecasts

similar to today’s ensemble- 24-48h Forscast [rmmmmaesT ] 24-48h Forecas [—=<Trmrer=7  24-48h Forecas T ) 24 dsh Forcos T
mean forecast. The data on
the right, the analyzed
precipitation conditional upon

the forecast, can be used to
statistically adjust and >
downscale the forecast.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Analog approaches like this ,
may be particularly useful for 2o rorces e 24-stn roreces . — RIS Y 24-42n roreves =
hydrologic ensemble :
applications, where an
ensemble of realizations is
needed.




Fraction

Rank histogram technique
for ensemble calibration

NCEP MRF precipitation forecasts,
from Eckel and Walters, 1998

-4 -2 0 2 4 6 8
4 @ | 3 | | o | D | PQPF Method
\&/ l—v-Demcntic Voting
P(T<-4) P3<T<5)
=030 =0.19
P(S < T) LS 25 35 45 55 ;;;.fu:jr;s(oul::; 115 125 135 145 155
=0.29 FIG. 10. Ranked probability skill score (RPSS) results for all fore-
cast lead times.
0,350 Rank Histogram Advantages: Demonstrated skill gain
0.5 : \ E Disadvantages:
' (1) Odd pdfs, especially when two ensemble
0.25 members close in value.
0.20 (2) Sensitive to shape of rank histogram, and
0.15 shape of histogram may vary with aspects
oo like precip amount --> sample size issues.
(3) Fitted parametric distributions as skillful
0.05
0.00
1 2 3 4 5 69

Rank

References: Hamill and Colucci (MWR, 1997, 1998; Eckel and
Walters, WAF, 1998; used at Met Office)



Bayesian model averaging (BMA)

K
p(y | f1>---7fK) — Zwkz gk:(y | fk:) —
k=1

0.12
1

MMS/GFS [~ 777 1 MMS5/Eta
5 MM5/Canada
5 i
3 - ' MM5/NGM
<
Z

MM5/Navy /

0.02 0.04
1 1

0.00
1

T * T T T T
280 285 290 295 300

Temperature

Figure 3: BMA predictive PDF (thick curve) and its five components (thin curves) for the
48-hour surface temperature forecast at Packwood, Wash., initialized at 0000 UTC on June
12, 2000. Also shown are the ensemble member forecasts and range (solid horizontal line
and bullets), the BMA 90% prediction interval (dotted lines), and the verifying observation
(solid vertical line).

Weighted sum of kernels
centered around individual,
bias-corrected forecasts.

Advantages: Theoretically
appealing. No parameterized
distribution assumed, weights
applied proportional to their
independent information

(in concept).

Disadvantages: When trained
with small sample, BMA radically
de-weighted some members
due to “overfitting” See Hamill,
MWR, Dec. 2007.

Ref: Raftery et al.,
MWR, 2005. Wilson 70
et al., MWR, 2007



Error, Members 4

Error, Members 4

Why BMA’s unequal weights?
regression correction accentuates error
correlations.

17850 Errors, Members 2 and 4,
Uncorrected

Error, Member 2

T850 Errors, Members 2 and 4,
Regression Corrected

Error, Member 2

Error, Members 3

Error, Members 3

17850 Errors, Members 2 and 3,
Uncorrected

3 ] .
-10 -5 0 5 10
Error, Member 2

T850 Errors, Members 2 and 3,
Regression Corrected
10 T T LI

-10 -5 0 5 10
Error, Member 2

Ref: Hamill,
MWR, Dec. 2007
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Why BMA’s unequal weights?
(2) E-M overfits with little training data

An “estimation-minimization” (E-M) algorithm is used to determine the weights
applied to ensemble members. If two forecasts have highly co-linear errors, E-M will

weight one very highly, the other very little.

Log(—likelihood of BMA, 40—day Training,
850 3—Day Forecast for Montreal

T -2.20F | [ 3
o E

< F

E g :
= -2.30 3 E
g’ ; Training Data é
- 2 E
> —2.40¢ ]
g -
© 250 T TTe--_. =
g, T T Forecast Data 7
o T 3
o ‘
>

< -

L | L | L -
.01000 .00300 .00100 .00030 .00010 .00003

Stopping Criterion (Fractional change in Log—Likelihood)

f

E-M is an iterative technique, and we can measure
the accuracy of the fit to the data through the
log-likelihood. Something odd happens here; as
the E-M convergence criteria is tightened, the fit
of the algorithm to independent data gets worse.

Log,o[Median Ratio (W, ... / Wmi)], 40—day Training,
1850 3—Day Forecasf for Montreal

6F 3

5t 3

2c 3

0 3 \ | ! \ \ ! =
.01000 .00300 .00100 .00030 .00010 .00003

Log,o[Median Ratio (Woae / Woin)]
w

Stopping Criterion (Fractional change in Log—Likelihood)

f

This plots the ratio of the weights of the highest-
weighted member to the lowest-weighted member.
As the convergence criterion is tightened, the method
increasingly weights a few select members and de-
weights others. 72



(BMA overfitting not a problem with
2+ decades training data)

Average Daily Log Likelihood

Log—likelihood of BMA, 22—year Training, Log,,[Median Ratio (w_.. / W], 23—year Trainin
10 in/1s Y 9,
T850 3—Day Forecast for Montreal 7850 3—Day Forecast for Montreal
~2.20 7 [ | ' * = 26F E
- ] - -
F ] ~NSE E
-2.30F E 5 E
F ] s 4 = =
—2.40 E— ______________ Forecast Dofo_i % 3 E_ —é
F Training Data 7 o E E
] c 2F =
O E =
-2.50 E 5 E E
[} E B
= 1F E
- 0 . | ! ! \ L 8; 0 £ \ \ l | | | =
-01000 -00300 -00100 -00030 -00010 -00003 -1 .01000 .00300 .00100 .00030 .00010 .00003
Stopping Criterion (Fractional change in Log—Likelihood) Stopping Criterion (Fractional change in Log—Likelihood)

With reforecast data set, we can train with a very large amount of data. When we
do so, the weights applied to individual members are much more equal. This
indicates that the unequal weighting previously is incorrect.
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Probability Density

0.02

0.00¢C

BMA’s problem: an example

BMA Test, Approx. Replica of Fig. 4

0.06 |

0.04 |

Climo

BMA
pdf

Bias-corrected
members

pdf \

-20 -10
Temperature (C)

Probability Density

0.14[

0.12

o
o

0.08

0.06

0.04

0.02

0.00 L. !
-20 -10

BMA Test, Equal Weights

......................................

Temperature (C)

Here’s a test of BMA in the winter season for a grid point
near Montreal. BMA ends up highly weighting the warmest
members (inappropriately so), thus producing a very high

probability of a warm forecast.
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Ref: Laurie Wilson, Met Service Canada, personal correspondence. See also upcoming Bishop et al. MWR manuscript.




“Bayesian Processor of Forecasts”

e Two key ideas:

— (1) Bayes’ Rule: leverage prior non-NWP
information, whether from climatology,
persistence, whatever. Update with NWP

information ¢(0‘f) . ¢(f‘0)g(0)

— (2) If data non-normally distributed, transform
data to space where normally distributed
before performing regression analysis.
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Ref: Krzysztofowicz and Evans, WAF, April 2008



Non-homogeneous
(Gaussian regression

Reference: Gneiting et al., MWR, 133, p. 1098
Predictors: ensemble mean and ensemble spread
Output: mean, spread of calibrated Gaussian distribution

f(X,0)~N(a+bX,c+do)

Advantage: leverages possible spread/skill relationship appropriately.
Large spread/skill relationship, ¢ = 0.0, d =1.0. Small, d = 0.0

Disadvantage: iterative method, slow...no reason to bother (relative
to using simple linear regression) if there’s little or no spread/skill
relationship.
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Is there a “best” calibration technique?

Using Lorenz ‘96 toy model, direct model output (DMO), rank histogram technique, MOS applied to
each member, dressing, logistic regression, non-homogeneous Gaussian regression (NGR), “forecast
assimilation”, and Bayesian model averaging (with perturbed members assigned equal weights)
were compared. Comparisons generally favored logistic regression and NGR, though differences
were not dramatic, and results may not generalize to other forecast problems such as ones with

non-Gaussian errors.

Pr{V=qys}, T=4

(a) DMO
rel = .0235
res= .0117

rel = .0009
res=.0194

(e) Logistic Reg.

(b) Rank Hist.

(c) Single-int. MOS

(d) Ens. Dressing

rel = .0146 rel =.1038 rel = .0101
res=.0125 res=.0111 res= .0151
L
(f) NGR (g) Fest. Assim. (h) BMA
rel = .0007 rel = .0201 rel =.0047
res=.0148 res=.0180 res=.0162
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Figure 8. As Figure 5, for Pr{V < qy;3} at lead time T = 4.

Ref: Wilks, Met. Apps, 2006, 13, p. 243



